翻訳と辞書
Words near each other
・ Complex organizations
・ Complex oxide
・ Complex partial status epilepticus
・ Complex plane
・ Complex polygon
・ Complete quotient
・ Complete Recordings (Black Tambourine album)
・ Complete review
・ Complete Riverside Recordings
・ Complete Savages
・ Complete School
・ Complete Scoundrel
・ Complete sequence
・ Complete Set Limited Box
・ Complete set of commuting observables
Complete set of invariants
・ Complete Single Collection '97–'08
・ Complete Singles Collection
・ Complete Singles Collection (Anti-Nowhere League album)
・ Complete Songs & Poems
・ Complete spatial randomness
・ Complete Sports
・ Complete streets
・ Complete Studio Box Set
・ Complete Surrender
・ Complete theory
・ Complete topological space
・ Complete UK Hit Singles 1952–2006
・ Complete Vanguard Recordings
・ Complete variety


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Complete set of invariants : ウィキペディア英語版
Complete set of invariants
In mathematics, a complete set of invariants for a classification problem is a collection of maps
:f_i : X \to Y_i \,
(where ''X'' is the collection of objects being classified, up to some equivalence relation, and the Y_i are some sets), such that x \sim x' if and only if f_i(x) = f_i(x') for all ''i''. In words, such that two objects are equivalent if and only if all invariants are equal.〔. See in particular (p. 97 ).〕
Symbolically, a complete set of invariants is a collection of maps such that
:\prod f_i : (X/\sim) \to \prod Y_i
is injective.
As invariants are, by definition, equal on equivalent objects, equality of invariants is a ''necessary'' condition for equivalence; a ''complete'' set of invariants is a set such that equality of these is ''sufficient'' for equivalence. In the context of a group action, this may be stated as: invariants are functions of coinvariants (equivalence classes, orbits), and a complete set of invariants characterizes the coinvariants (is a set of defining equations for the coinvariants).
==Examples==

* In the classification of two-dimensional closed manifolds, Euler characteristic (or genus) and orientability are a complete set of invariants.
* Jordan normal form of a matrix is a complete invariant for matrices up to conjugation, but eigenvalues (with multiplicities) are not.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Complete set of invariants」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.